No. XXXV (2013)
Articles

Spatial autocorrelation in crime rate research

Stanisław Mordwa
University of Lodz

Published 2013-01-01

Keywords

  • crime,
  • spatial autocorrelation

How to Cite

Mordwa, S. (2013). Spatial autocorrelation in crime rate research. Archives of Criminology, (XXXV), 61–77. https://doi.org/10.7420/AK2013B

Abstract

Spatial analysis of crime distribution has a long tradition. In general, studies concerning this issue usually focused on compiling thematic maps. Some more advanced researching methods and techniques were popularised only after personal computers became widespread and GIS software came into broader use. One of the research procedures now available thanks to this development was spatial autocorrelation, which is the subject of this paper. In practice, spatial autocorrelation is about the degree of correlation between an observed variable in a given location with the same variable in a different location: the method allows to illustrate concentration areas of an analysed phenomenon in space, or the lack of such areas. The article first presents the theoretical and practical basis for the notion of autocorrelation. Following other researchers, it was assumed that the fundamental reason for spatial relations to emerge, i.e. spatial autocorrelation, are the interactions taking place among neighbouring objects in a space. This warrants to conclude that the intensity of a phenomenon analysed in one spatial unit exerts some effect (stimulating or destimulating) on the intensity of the same phenomenon in neighbouring units of space. This is confirmed in Waldo Tobler's first law of geography: “everything is related to everything else, but near things are more related than distant things”. By studying spatial autocorrelation, one may discover three different situations (fig. 1): a) positive autocorrelation – when units of high value neighbour units of high value of the same factor (hot spots), and low value units are found near each other at the same time (cold spots); b) negative autocorrelation – when high value units neighbour low value units of the same factor and vice versa; c) no autocorrelation – when no principle is de-tected, as a unit of high value is neighboured by units of varied level of the factor in question – both high and low. In order to study the proneness of a phenomenon to create autocorrelation, one should first establish the nature of spatial relations taking place between spatial units – meaning the closeness (intensity) of neighbourhood. The relations take the form of spatial weight matrices (fig. 2) in which queen contiguity or rook contiguity is used. The weights can also be defined based on the threshold distance or k-nearest neighbours. Due to the intensity of social-spatial contacts, it was decided that the best effects in analysing criminal activity will be obtained with the use spatial weight matrices in queen contiguity. The assumption was that the distribution of pathological behaviours within a city, it is the direct contact between people living nearby that is important; the existence of formal or informal boundaries (blocks, estates, neighbourhoods, etc.) was considered irrelevant. A formal assessment of autocorrelation can be conducted with a set of appropriate indicators analysed globally or locally.

References

  1. Anselin L., Cohen J., Cook D., Gorr W., Tita G., Spatial Analyses of Crime, [w:] D. Duffee, Measurement and Analysis of Crime and Justice, NCJRS, Rockville 2000.
  2. Anselin L., Local Indicators of Spatial Association – LISA, „Geographical Analysis” 1995, t. 27.
  3. Bivand R., Autokorelacja przestrzenna a metody analizy statystycznej w geografii [w:] Z. Chojnicki (red.), Analiza regresji w geografii, PWN, Poznań 1980.
  4. Bogacka E., Przestępczość w Poznaniu na tle innych miast wojewódzkich Polski w latach 2000-2006 [w:] J. W. Kwiatkowski (red.), Obrazy współczesnej metropolii a metropolie przyszłości – między przełomem a kontynuacją, Wyd. UW, Warszawa 2012.
  5. Brantingham P., Brantingham P., Vajihollahi M., Wuschke K., Crime Analysis at Multiple Scales of Aggregation: A Topological Approach [w:] D. Weisburd, W. Bernasco, G. Bruinsma (red.), Putting Crime in its Place. Units of Analysis in Geographic Criminology, Springer, New York 2009.
  6. Ceccato V., Haining R., Signoretta P., Exploring Offence Statistics in Stockholm City Using Spatial Analysis Tools, „Annals of the Association of American Geographers” 2002, nr 92.
  7. Ceccato V., Oberwittler D., Comparing Spatial Patterns of Robbery. Evidence from a Western and an Eastern European City, „Cities” 2008, nr 25.
  8. Chainey S., Ratcliffe J., GIS and Crime Mapping, John Wiley and Sons, Hoboken 2005.
  9. Cracolici M., Uberti T., Geographical Distribution of Crime in Italian Provinces. A Spatial Econometric Analysis, „Jahrbuch für Regionalwissenschaft” 2009, nr 29.
  10. Erdogan S., Dereli M., Yalçın M., Spatial Analysis of Five Crime Statistics in Turkey, FIG Working Week 2011.
  11. Evans D., Herbert D. (red.), The Geography of Crime, Routledge, London 1989.
  12. Frieske K., Przestępczość w Polsce - lata dziewięćdziesiąte. Stereotypy i realia [w:] M. Marody (red.), Wymiary życia społecznego. Polska na przełomie XX i XXI wieku, Wydawnictwo Naukowe Scholar, Warszawa 2002.
  13. Getis A., Reflections on Spatial Autocorrelation, „Regional Science and Urban Economics” 2007, t. 37.
  14. Głaz M., Ilnicki D., Przestępstwa i wykroczenia w przestrzeni Wrocławia [w:] J. Słodczyk (red.), Przemiany struktury przestrzennej miast w sferze funkcjonalnej i społecznej, Wyd. Uniwersytetu Opolskiego, Opole 2004.
  15. Goldschneider M., Geografia przestępczości. Uwagi na temat przestrzennych analiz przestępczości przy wykorzystaniu technik cyfrowych, „Archiwum Kryminologii” 2010, t. XXXII, s. 23-43, https://doi.org/10.7420/AK2010B.
  16. Groff E., Weisburd D., Morris N., Where the Action Is at Places. Examining Spatio-Temporal Patterns of Juvenile Crime at Places Using Trajectory Analysis and GIS [w:] D. Weisburd, W. Bernasco, G. Bruinsma (red.), Putting Crime in its Place. Units of Analysis in Geographic Criminology, Springer, New York 2009.
  17. Herbert D., Crime and Place: An Introduction [w:] D. Evans, D. Herbert (red.), The Geography of Crime, Routledge, London 1989.
  18. Higgins D., A Crime Analyst’s Guide to Mapping, ICJIA, Chicago 2003.
  19. Hołyst B. (red.), Atlas przestępczości 1976-1978, PWN, Warszawa 1979.
  20. Kossowska A., Przestępczość na terenie wielkiego miasta [w:] J. Jasiński (red.), Zagadnienia nieprzystosowania społecznego i przestępczości w Polsce, Ossolineum, Warszawa 1978.
  21. Kossowska A., Środowiskowo-przestrzenne uwarunkowania przestępczości. Wybrane zagadnienia współczesnej ekologii przestępczości, „Archiwum Kryminologii” 1993, t. XIX, s. 7-16, https://doi.org/10.7420/AK1993A.
  22. Lander B., Towards an Understanding of Juvenile Delinquency, Columbia Univ. Press, New York 1954.
  23. Lowman J., Conceptual Issues in the Geography of Crime. Toward a Geography of Social Control, „Annals of the Association of American Geographers” 1986, t. 76, nr 1, s. 81-94.
  24. Mordwa S., Kradzieże w przestrzeni Łodzi, „Acta Universitatis Lodziensis. Folia Geographica Socio-Oeconomica” 2011, nr 11.
  25. Mordwa S., Przestępczość i poczucie bezpieczeństwa w przestrzeni miasta. Przykład Łodzi, Wyd. Uniwersytetu Łódzkiego, Łódź 2013.
  26. Mordwa S., Przestępstwa w dużych miastach w Polsce (na przykładzie Łodzi) [w:] I. Jażdżewska (red.), Funkcje metropolitalne i ich rola w organizacji przestrzeni, ŁTN, Łódź 2003.
  27. Mordwa S., Przestępstwa w przestrzeni publicznej. Przykład Łodzi [w:] I. Jażdżewska (red.), Człowiek w przestrzeni publicznej miasta, Wyd. UŁ, Łódź 2011.
  28. Mordwa S., Zastosowanie GIS w badaniach przestępczości, „Acta Universitatis Lodziensis. Folia Geographica Socio-Oeconomica” 2013, nr 14.
  29. Ratcliffe J., Crime Mapping: Spatial and Temporal Challenges [w:] A.R. Piquero, D. Weisburd (red.), Handbook of Quantitative Criminology, Springer, New York 2010.
  30. Rengert G.F., Lockwood B., Geographical Units of Analysis and the Analysis of Crime [w:] D. Weisburd, W. Bernasco, G. Bruinsma (red.), Putting Crime in its Place. Units of Analysis in Geographic Criminology, Springer, New York 2009.
  31. Suchecki B. (red.), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Wydawnictwo C.H. Beck, Warszawa 2010.
  32. Tita G., Greenbaum R., Crime, Neighborhoods, and Units of Analysis: Putting Space in Its Place [w:] D. Weisburd, W. Bernasco, G. Bruinsma (red.), Putting Crime in its Place. Units of Analysis in Geographic Criminology, Springer, New York 2009.
  33. Tobler W., A Computer Movie Simulating Urban Growth in the Detroit Region, „Economic Geography” 1970, t. 46, s. 234-240.
  34. Weisburd D., Bruinsma G., Bernasco W., Units of Analysis in Geographic Criminology. Historical Development, Critical Issues, and Open Questions [w:] D. Weisburd, W. Bernasco, G. Bruinsma (red.), Putting Crime in its Place. Units of Analysis in Geographic Criminology, Springer, New York 2009.
  35. Weisburd D., McEwen T., Introduction. Crime Mapping and Crime Prevention [w:] D. Weisburd, T. McEwen (red.), Crime Mapping and Crime Prevention, Criminal Justice Press, Monsey 1997.
  36. Wilson R., Filbert K., Crime Mapping and Analysis [w:] S. Shekhar, H. Xiong (red.), Encyclopedia of GIS, Springer, London 2008.
  37. Wing M., Tynon J., Crime Mapping and Spatial Analysis in National Forests, „Journal of Forestry” 2006, t. 104, nr 6, s. 293-298.